REPORT 1185

THE CALCULATION OF PRESSURE ON SLENDER AIRPLANES IN SUBSONIC AND
SUPERSONIC FLOW !

By Max. A. HnasreT and Harvarp Loaax

SUMMARY

Under the assumption that a wing, body, or wing-body combi-
nation 18 slender or flying at near sonic velocity, expressions are
given, which permit the caleulation of pressure in the immediate
vicinity of the configuration. The disturbance field, in both
subsonic and supersonic fight, is shown to consist of two-dimen-
sional disturbance fields extending laterally and a longitudinal
field that depends on the streamwise growth of cross-sectional
area. A discussion 18 also given of couplings, between lifting
and thickness effects, that necessarily arise as a result of the
quadratic dependence of pressure on the induced velocity
components. :

INTRODUCTION

This paper is concerned with the prediction of pressure
distribution on or in the immediate vicinity of & wing, body,
or wing-body combination under conditions in which the
geometric configuration is slender in the flight direction or
is flying at near sonic velocity. Thematerial to be presented
is thus associated with the rather extensive group of re-
sults that belong to what is usually referred to as slender-
wing theory. The basic assumptions and methods can be
found in publications by Munk, R. T. Jones, and Ward
(refs. 1, 2, and 3) 2 and a discussion of the applicability of
the methods to the prediction of loading on slender wings at
sonic flight speeds has been given in reference 5. In refer-
ence 2, attention was directed toward the calculation of load
distributions over wings in subsonic and supersonic flight
and reference 3 was devoted to the consideration of super-
sonic flight velocities. It is therefore of interest to investi-
gate further the effects attributable to thickness on wings
and wing-body combinations at both subsonic and super-
sonic flight speeds. Such investigations lead to valid ap-
proximations of interference effects and also indicate the way
in which thickness and lifting effects can produce couplings
in the calculations of pressures induced in the flow field.

ANALYSIS

It is proposed to take the basic solutions of the linearized
partial differential equations governing three-dimensional
compressible flow and to obtain a simplification of the ex-
pressions by restricting attention to the induced field in the
immediate vicinity of slender airplanes or missiles. These

1 Supersedes NACA TN 2000, ““The Calculation of Pressure on Slender Alrplanes in Sub-
sonio and Supersonic Flow,” by Max, A. Heaslst and Harvard Lomax, 1853..

2 Referencs should also be made to the extansions of slander-wing theory by Adams and
Sears (ref. 4),

simplified expressions contain solutions used previously to
study the forces and moments on lifting wings and bodies.
In addition, however, they can be used to evaluate the
first-order thickness effects on the pressure in the vicinity of
the wing and body.

Consider, first, the construction of a weakly disturbed
flow field. Let a uniform stream flow in the direction of
the positive ¢ axis of a Cartesian coordinate system, as in
figure 1. Immerse in the stream, which has & velocity U,

b:

Uo

Figore 1.—Orientation of coordinate system and perturbation
velocities.

and & Mach number A4, a slender wing-body shape the

surface of which is inclined at & small angle to the free-

stream direction. This angle of inclination must be small
. ’ 645
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enough so that nearly everywhere in the fluid the magnitude
of the perturbatlon velocity vector divided by the speed of
the free stream is much less than one; that is,

T -

Moreover, large supersonic Mach numbers are to be avoided
and as a measure of this condition the inequality

VAT

<1 (1b)

is imposed.

. Consider, next, the lmeanzed partial differential equation
governing Wea,kly disturbed isentropic fluid flow. In terms
of the perturbation velocity potential ¢(z, ¥, 2), the lowest
order approximation consistent with mequa.htles (la,) and
(ib) i is

(1_115[02) ezt ¢W+ ©=0 . (2)

where t.he subscripts denote partial differentiation with
respect to the indicated variable.

Consider, finally, the expression for the pressure coefficient
that is again consistent to the lowest order with inequalities
(1a) and (1b). By expanding the pressure-velocity relation
for steady isentropic flow and neglecting higher-order terms,
one finds -

2 (1—MPuo*+uw?
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where p and p are pressure and density, respectively, and
the subscript 0 refers to conditions in the free stream. It
follows from inequalities  (1a) and (1b) that pressure co-
efficient can be expressed in the form

2u v*+u?
A @)
Equation (3) is the simplest general expression for pressure
coefficient that is still entirely consistent with the assump-
tions basic to the development of equation (2).

Special solutions applying to problems of the class indi-
cated can be obtained by appropriate simplification of general
solutions to equation (2). Such a procedure will be discussed
in the next section. The pressure coefficient is then deter-
mined by substituting these results into equation (3). The

simplifications that can be made in evaluating the pressure -

on the surface of the airplane will also be discussed.
THE REDUCED SOLUTIONS

Subsonic.—As it applies to subsonic flow, equation (2)
can be written in its normalized form as

ozt Wﬂv‘l‘ =0 (4)

The analysis of equation (4) can be interpreted as applying
to the condition My=0 but one can extend the solutions
throughout the subsonic Mach number range by applying
the Prandtl-Glauért rule.

A well-known solution to equation (4), resulting from an
application of Green’s ‘theorem, is given by the expression

vevd——i [ [(3o—r o) e )

19 . s on’ on’ m’
where dS, is the element of surface area on the airplane or its
vortex wake, r equals +/(y—u1)?+- (z—z1)?, and d/on’ is the
derivative normal to the surface S;. When this solution is
applied to boundary-value problems for slender configurations
it can be simplified considerably.

For example, when the airplane shape is slender it is
justifiable to introduce simplifications in the form of the
derivative 0/on’ and the differential area dS;. The operator
0/on’ can be expressed as

0 0 0
.M a:'l"nz b—y'l‘na 32

where ny, 2, and n, are the direction cosines between a normal
to the surface Sy and the z, y, and z axes, respectively. The
differential area dS; can be expressed as

dsydzy
N p—

where ds; is & differential length along the surfaco in a yz
plane. If theshapeisslender,n,issmall and can be neglected
relative to either unity or /ng?-+n4?

By means of these snmphﬁcatlons, equatxon (58) can be
approximated by the expression (from now on, the configura-
tion will be considered to Iie along the positive % axis with its
foremost part in the x;=0 plane) 4

ol 9= f af (Gee o) T ©

where 0/on represents mb [Oy+nzd / 0z, the normal derivative
to a section in the yz pla.ne and s is the curve bounding this
section.

If the wing-body configuration is slender, the ratio
[rf(z—=,)]? is small over almost all of its surface and vortex
walke provided the point z, y, zis on or in the vicinity of these
surfaces This implies the approximation

1,/(9:?—:5,)"—1—1"%[:5—&:1[ | (7

can be used-to simplify further equation (6). However,
since, in the limiting case of r=0, equation (6) is & divergent
integral, it is necessary to- intreduce this approximation
with some care.

First let us consider in equation (6) only the portion of the
integral multiplying ¢0/0on. Designating this by ¢;(z,y,2)
one can readily show -

o(21,81) (z—1:) (Or/On)
‘pl(x;:yzz) 4:11‘ azf f T-\/(:E—Zl)2+r2 d81 (8&)

which, with the approximation given by equation (7), re-
duces to - .

—129
soz(ﬂ?,?/, 2) = 4 ba:f
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W % Inrds; (8b)
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Since this can be written

—12 /[ -
:p,(z,y,z)wz oz (j; dz}.'—J; dlh)f(p % Inr dsy

it simplifies to

oi(E,2) ™ — f o > Inr ds, ©

The other term in equation (6) requires more attention.
Designating the velocity potential induced by this term as
@1, We can write

ouEy2)= T4n Z)a;f f

b(p T—2
on II—'Ill

In |:c—a:1|—|'—1,/7(-:c—x1)’+r’ s

(10)
The logarithm in the integrand separates into two parts and

if the term containing In(1/r) is further simplified, in the
manner used to derive equation (9) from equation (8), one has

ei(z,y,2)= 2 f ¢l’n7' ds1—

1 0 (° z—m 5¢ _
-4;-6—5 0 ]__[27'"931 dauj;aln[l:c 931|+

Ja—z)? 77 ds, 1y

To the second term in equation (11) we now apply the
mean-value theorem. First divide 8, the curve bounding the
airplane’s normal cross-sectional area, into ;8’ go that

dp/on has the same sign everywhere along each s;. This has
o clear physical interpretation, for, since ¢ is the perturbation
velocity potential, to the order of our approximations

blp de
7. 3¢ S an= =S

where S,(z,) is the part of the cross-sectional area with its
only exterior boundary along the arc s;. (Since we are con-
cerned only with the rate of change of S;(z), the internal
boundary is immaterial.) Hence, if 0¢/On is everywhere
positive along s;, the surface is everywhere expanding there;
and, conversely, if d¢/On is negative, the surface is con-
tracting.

Using these definitions, we can apply tlie mean-value
theorem to the second term in equation (11) and write

| 82 inllo—al+VE—ay Tl da=Us Sinlz—al+

Ve—z) {1 Siwy a3

where r,=+/(y—1,)3-+(z—z;)* and y;, 2, is & point on the
surface of the configuration in the z; plane somewhere along
8,. Combining the above results, and applying the Prandtl-
Glauert transformations (B=+[3M—1], z—z, y—>By, 2—f2)
one can now approximate equamon (5), when it is applied to
the flow field in the vicinity of slender wing-body configurations,
and further, when it is applied to configurations for which

(12)

S’ () i3 continuous, and for which S3(z) exists, by the equation
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90(%?/; 2) w%ﬁ(’%ﬁ“? %) Inr ds,—
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(14)

Notice that the limitation of equation (14) to the vicinity
of slender shapes has, as yet, entered only in the approxima-
tion of equation (8a) by equation (8b), that is, in approxi-
mating the effect of the ¢0/dn(lnr) (or doublet) term as given
in equation (14). If equation (14) is applied to the study of
thin, nonlifting, uncambered wings, therefore, it is only
limited by the assumption that S” (z) is continuous. Further,
if such wings are slender, the position of the point y;, z; does
not deviate far from zero. Hence, we can chose for r; the
value 7y, where ri®=y®+2%. Then, since ;S}'(:::)=S’ "(z),

integrating equation (14) by parts yields
(@) Inre

f ‘Plnr ds UO S,(xl)dxl UO S,
4
(15)

o Y@—z s 27

which is -the result presented by Keune in reference 6.

If we continue to study the flow in the vicinity of general
slender shapes, however, equation (14) can be further sim-
plified by applying the approximation given in expression
(7). In the first place, if S’/ (x) is continuous (and, therefors,
vanishes at =0 and [, [ being the total airplane length), the
equation for the potential can be approximated everywhere
in the vicinity of the configuration by the simple expression

14 (x: Y, 2)

T—

o5, 1, =i 9y =g [ 87e) iy o
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(16)

where S(a:) is the total cross-sectlonal area in a plane norma.l
to the free stream and where 3

os(z; v, z)—2 f(a‘a °3 )lnr dsy

On the other hand, if 8’/ (z) has a discontinuity, the approx-
imation given by equation (16) yields a logarithmic discon-
tinuity in the value of d¢/dz, that is (see eq. (3)), in the
pressure coefficient. This discontinuity is spurious (it does
not exist in solutions given by exact linearized theory) and
it can be avoided by modifying slightly the simplifying
procedure followed above.

Suppose, for example, S’/(z) has a finite discontinuity *
of magnitude AS;’(l;) along the arc s, in the plane z=l,
so that

an

S'@; a<lh

(18)
S @487 ();

SII($)={
Z1<2:

3 Notice that w1(z; 7, 2) Is a solution to Laplace’s equation in two (the y and z) dimensions.
The z dimension does not appear explicitly in this part of the complets solution for o{z, v, 2
but enters as a parameter when 1 is adapted to particular boundary conditions.

1 Any integrable singularity In §7/(z) could be treated but the analysis was restricted for the
sake of simplicity. R
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where S.'(z) is everywhere continuous and AS} (l;) is a
simple step function. Then equation (14) reduces to

=T . 2z—x| dory—

Uo € o
99(33: Y, 2)“992(37; Y, 2)_4_7:ﬁ Sc (21) Ix T I 8

Uo, s f ® g—1 I:Iz—-:rxl-l-\(z—xx)’+ﬁ‘r:’
aS/@) [, Em = ld:cl

(19)

Further, when z lies between 0 and I, equation (19) can be
written (since S;'(z1)) =—AS} (l) for =, >0)

l —
so(w,y,z)zw(x;y%)—%ﬁ S? () I: zlll 2I$B 7| dn—

UoAS] () {(z—x) [1—ln @]ﬂll—xlm

4
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8
The physical significance of equations (16) and (20) is
clear. If the second derivative of the area distribution is
continuous, the three-dimensional velocity field induced by
airplanes that are slender is approximated in the vicinity of
their surfaces, by
(1) a velocity field that is independent of the Mach num-
ber and satisfies the two-dimensional Laplace equation
and boundary conditions in transverse planes
(2) alongitudinal field that depends on the Mach number
and streamwise variation of cross-sectional area and
is independent of ¥ and 2.
If the second derivative of the cross-sectional area is dis-
continuous, part (2) of the above interpretation should be
modified to apply only to the continuous portion of S’/(z)
and additional terms, depending on the number and location
of discontinuities in S’/(z), are included.
Supersonic.—In the case of supersonic flow, the normalized
form of equation (2) becomes

An analysis based on equation (21) applies specifically to the
condition My=-/2 but these results can be extended through-
out the supersonic Mach number range by applying the
Prandtl-Glauert rule. Volterra’s solution to equation (21),
(ses, o. g., ref. 7, p. 190) which is analogous to the subsonic
form given in equation (5), is expr&sible as

oy, 2= Ton bsz@v ? o by

In E=ENE=E) T g0 00

r

where, as in the subsonic case, dS; i1s an element of surface
area on the airplame or its vortex sheet and » equals
VJy—1)*+(z—2z)% In distinction to the subsonic solu-
tions, the ares of integration is now the portion of the
airplane and its vortex wake within the forecone from the
point z,7,z and Ofdy is the derivative along the conormal 8
rather than the normal.

& The conormal, for the normalized form of the differential equation, is the veetor that
results from changing the sign of the z component of the normal.

If the conormal and differential area are expressed in
terms of the direction cosines and the application of equation
(22) is limited to slender configurations, »; can again be

neglected relative to unity or v/ns?4n;%. Furthermore, the
approximation, similar to expression (7) for the subsonic

case,
VE—z) " =~ |z—z|

is implied. Under these conditions, the potential in the
vicinity of slender shapes flying at supersonic speeds can be
approximated by the equation

z%j;(?_i:_% Inr ds;—
U, == ., _ _ )

(23)

¢ (37,‘!/, z)

where, again, S’(z) must be continuous. Equation (23)
differs from equation (14) only by a factor of 2 in the second
term and the extent of the z; integration. In the supersonic
case the 2, integration is carried only to x—8r;, or to = when
r; can be neglected, since the original integration area  in-
cluded only the points in the forecone from ,,2z (these two
differences were compensating in the derivation of the first
integral term). The second term in equation (23) further
simplifies in & manner analogous to that used for the simpli-
fication of equation (14). For example, the expression for
the perturbation potential near a slender configuration hav-
ing a discontinuity in S’/(z) along the arc s, in the plane
x=l, is given by

o) = a2~ 22 [ 57 () 2

TSy () a:—ll—ﬁr,{
i <l+lz—ll—ﬁnl Brnrst

oy o FAEACETIT T L g |

(24)

where 8. (z) and AS7 (I;) are defined by equation (18) and
¢a(z;y,2) is the two-dimensional solution to Laplace’s equa-
tion defined by equation (17).

The physical significance of equation (24) is analogous to
that for equation (20). Before proceeding to the next section,
however, two observations regarding these solutions are
worth mentioning. In the first place, notice that if discon-
tinuities in S (z) occur on the z axis, as could be the case,
for example, at the nose of a pointed body of revolution or at
the apex of a triangular wing, and if one is interested in
evaluating ¢(z,7,2) only on the object’s surface, the value of
r; for such discontinuities would be zero and, if there were no
other discontinuities, equations (20) and (24) would be
correct if the ASY (I;) were set equal to zero and S (z;) was
written simply S’/(z;). In the second place, for the super-
sonic case, only the discontinuities between the nose and the
plane z, at which the induced velocities are being calculated,
affect the flow there. Hence, unless one is interested in the
flow field behind the configuration, any discontinuity at
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z=l can slways be excluded from equation (24). Taking
these observations into account simplifies the treatment of
many body-of-revolution and supersonic-wing problems.

THE REFERENCE COORDINATE SYSTEMS

Equation (2) was developed specifically for the case in
which the undisturbed stream at infinity is parallel to the z
axis. A coordinate system so oriented is usually referred to
as the wind-axes system. (See fig. 2.) When the configura-

-X

y

Body axes

Us

wind axes

(a) Body axes.
(b) Wind axes.
Fraure 2.—Illustration of wind- and body-axes systems.

tion is tilted with respect to the free-stream vector, however,
it is often easier to study the boundary-value problem with
axis placed along the center line of the fuselage. Such a
coordinate system is usually referred to as the body axes.

Obviously the wind and body axes differ significantly
only by rotations about the y and z axes. When 1, is
zero, equation (2) is invariant to such a rotation, but for
values of M, greater than zero this is no longer true. How-
ever, when M, is greater than zero, equation (2) represents
the governing differential equation only to & certain order,
and, if the magnitude of the rotation is similar to that of the
parameters by which the equation is ordered, it is, in this
sense, still invariant to rotations about all three axes for
both subsonic and supersonic Mach numbers. Thus equa-
tion (2) is to the lowest order the governing partial differ-
ential equation for both wind and body axes, provided the
airplane is slender and the angles of attack and sideslip
are small,

Although the partial differential equation is invariant
with respect to a small rotation of the coordinate system,
the boundary conditions and expression for the pressure
coefficient in terms of the perturbation velocities are not.
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The following will contain a discussion of the boundary con-
ditions and the pressure and loading coefficients with
reference to a body axes system.

THE BOUNDARY CONDITIONS

The boundary conditions require that the gradient of the
total velocity potential evaluated infinitely far from the
aircraft be consistent with a uniform free stream there (the
direction of which depends on the orientation of the coordi-
nate system) and when evaluated normal to and on the
surface of the airplane itself be zero. Let ®(z,y,2) denote
total velocity potential, ¢(z,y,2) perturbation velocity poten-
tial, and refer the analysis to body axes in a free stream.
If the orientation of the free-stream velocity vector to the
system of axes is fixed by the angles « and v as shown in
figure 2, one can write

®(2,y,2) = Us(z cos a cos Y+ sin Y+z cos ¥ sin )+ ¢(2,y,2)

such that on the aircraft surface

Uy(n, cos @ cos V-+ng 8in Y+ 8in @ €08 Y) +71e0 -+ Nemy -
Ny, =0

n1, e, and nz again being the direction cosines of & normal
to the airplane surface with respect to the z, 7, and z axes,
respectively. By the assumptions basic to the present
theory, the latter equation reduces to

Uyla-tnatnsed-+oe olz,9=0 (25)
where, as before, n is the normal to the curve bounding a
cross section in the yz plane.

Equation (25), which applies to arbitrary slender shapes,
can be simplified for many specific problems. Consider
now three types of configurations that lead to such simpli-
fications: first, a surface, such as & wing, which deviates

*only slightly from a plane; second, a surface which forms a

body of revolution; and, third, a surface which is a com-
bination of the above two.

Planar systems.—Let h(z,y) be the distance & surface
deviates from the z=0 plane, and & be local semi-span.
(See fig. 3(a).) Assume that «f(ds/dx)<<<1 holds; then
furthermore, if the inequality (0k/0z)/(ds/dx)<<<1 is satis-
fied, it is consistent with the previous approximations to
neglect the y component of the normal along the wing sur-

" face and to project the velocity vector represented by the

resulting vertical derivative to the upper or lower surface
of the z=0 plane. In this way equation (25) becomes

Uoni+ma)+mn; (g_i_‘:)‘-.):()

and, since n;/ns=—0h/dz, the boundary conditions for planar
problems ® are expressed by the equation

2\ __ oh
(g—z)’_o_ Usat- U 20 @6)

—— e

6 Certain planar systems, such as the eruciform wing, require more than one plane but the
concepts are essentially the same as those presented here,
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\,
S—z=h (x5

(8) Planar wings.
(b) Bodies of revolution.
(¢) Wing-body combinations.
Fiqgure 3.—Types of configurations for which boundary-value
problems are discussed.

" Bodies of revolution.—Let R be the radius of & body of
revolution. (Seefig. 3(b).) If 6 is measured from the z axis
in the ¥z plane and 7 is set equal to zero, the relations

__—dRjdz dR

_ cos 0
TVt @RE & TRy

together with equation (25), give for the normal derivative
on the surface of the body
)

b—n>B=Uo %"'Uad cos8 0-

= cos @

27

which is the simplified expression of the boundary conditions
pertaining to bodies of revolution.

Interference effects.—Consider, finally, surfaces that are
a combination of the above two as, for example the one
shown in figure 3 (c).
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. - The rather' obvious extension of the above concepts is to

"apply equation (26) over the winged portion of the con-
ﬁgumtxon and equation (27) over the body. It is then

-necessary, however, to consider therelative magnitudoes of the
- terms dA[0z, ds/dz, dt/dz and dR/[dz, since they appear in the
i solutions in various combinations: If the winged portion

'is to be treated as a planar problem, the magnitude of

Oh/dz must be small enough to be neglected in comparison
to the leading- and trailing-edge slopes, ds/dz and dt/dz.
But this does not imply that dA/0z can be neglected in com-
parison to dR/dxz or that dR/dx can be neglected in com-
parison to either ds/dz or di/dz. 'The latter approximations
will not, in general, be made.

THE PRESSURE COEFFICIENT

The expression for the pressure coefficient given by
equation (3) is written in terms of velocity components
that are referred to the wind axes. Its re-expression in
terms of velocities referred to the body axes is readily
determined. For the orientation shown in figure 2 (a), the
equation becomes

Cr=—7r (%-I-’Y%-l-asos)— (% +o:) (28)

Equation (28) can be used, in general, to evaluate the pres-
sure in a perturbation velocity field that is referred to the
body axes. If the interest is limited to the pressure on the
surface of the aircraft, however, certain simplifications can
be made. For example, consider the configuration illus-
trated in figure 3 (c) consisting of a sweptback wing mounted
on g body of revolution. For simplicity, let y=0. Applying
the boundary conditions given by equations (26) and (27),
one can show that on the surface of the wing

@)L
C, U°+ T, no+a’ 5% (29a)
and on the surface of the bo’dy

~ 2o L (Veasin o) o0) | +o—(Z)' et

These solutions can be simplified further by considering the
detailed nature of the perturbation velocity field induced by
shapes such as that shown in figure 3 (¢). For example, if
S’/ (z) is continuous, the results given by equations (20) and

| (24) can be expressed in the form

ﬁo(xyy:z) = ﬁoﬁ(z ;’y,Z) +A($) (3 0)'

where the expression for A(z) depends on whether the speed
is subsonic or supersonic. Further, for the particular con-
figurations being considered, the expression for ¢s(zy,2) can
be written in the general form

d
(%3, 2) = aealt,8, 25, 2)+b—i’ oolt,8, By, 2)+% vo(t,8,25;1,2)
(31)

since the dependency on z can enter only through the bound-
ary conditions which, in turn, are specified by the body

" radius R(z), the wing thickness, h(z,y), and the lateral
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distances from the center line to the trailing edge and leading
edge, t(z) and s(z), respectively. The term «p, will be re-
ferred to as the potential due to angle of attack, since it
vanishes when the angle of attack vanishes and increases

linearly with increasing «; the term (0h/0%)er+ (dR/dz)¢. |

will be referred to as the potential due to thickness, since it

exists when the angle of attack is zero, does not change with :

|
:
!
i
3
[
i
§

1

angle'-of-nt.tack change, and vanishes when the thicknesses !

of the wing and body do not vary with z.-

By breaking ¢; down into its component parts as in
equation (31), it has been ordered in that the magnitudes of
the terms on the right-hand side of equation (31) are con-
trolled by the coefficients of the ¢’s, and the derivatives of
¥a, ¥b, 2nd ¢, with respect to s, ¢, R, ¢, and z can all be con-
sidered equal. Since « and 0#/0z are negligible relative to
dt/dz and ds/dx (as was pointed out in the discussion of the
boundary conditions for interference problems), equations
(292) and (29b) can be written:
on the surface of the wing

R [26! Opq Q¢
oy oy

2R L.

and on the surface of the body
2 d¢ , (dR 1 dR 0¢a O,
Or=— {U E):c+< >+U2R’ [2"‘ 20 00 T
aﬂoo '
ae]} (32b)

If the body is & cylinder so that its radius does not vary
with 2, the pressure coefficient reduces to

. 200, 1
0” {Uo bI+Uo2

+

(32a)

oh a‘!’b 0,
dz 26 20

o Sk bﬂoc

+ T —2alJ R sin

_[_20¢
0,,_[ el (33)
LOADING COEFFICIENT
By definition the loading coefficient is
"_=(017)L_ (Op 14 (39

where the subscripts L and U refer to the upper and lower
surfaces of the airplane, respectively. It is immediately
apparent from an inspection of equations (34) and (30) that
the loading is not affected by A(z). Hence, the lift, pitching
moment, rolling moment, and induced drag for slender
shapes having a continuous variation of S’/(z) can all be
oxpressed entirely in terms of ¢:(z;y,2).

Consider again the type of shapes represented in figure
3(c) and let there be no discontinuities in S’/(z). The
velocity potential ¢, for such a class of configurations has
been expressed in equation (31) as the sum of three poten-
tials: one due to angle of attack, one due to the thickness of
the wing, and one due to the thickness of the body. It is
now useful to remark that ¢, has odd symmetry with refer-
ence to the z=0 plane and ¢, and ¢, have even symmetry.
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Placing -equations (32a) and (32b) into equation (34) and
using these properties, one finds

bqoa

( = +U0 L2 b"‘)l (350)
and )
( iy . D%'I'UOR” a (5 ba?) (35D)

where A indicates the difference between a quantity on
vertically opposed points of the upper and lower surface of
the airplane.

Tt is apparent from the last two equations that, in general,
the angle-of-attack and thickness solutions have a coupling
effect on the loading coefficient and therefore their contribu-
tion to the load distribution cannot be treated separately.
It is also important to notice the two special cases in which
the coupling effects vanish; namely, a& body of revolution
without wings, and an airplane with a cylindrical body
between the foremost and rearmost extent of the wing. In
the former case the term 0¢./08 is zero and in the latter

dR/dx is zero. In both these cases the equation for the
loading coefficient is

AP_o 12002 \d0

7 2aA oz UOA 57 (36)

THE TOTAL LIFT

Total lift can be obtained, of course, by integrating the
loading coeflicient over the aireraft surface. A much simpler
way of finding the lift, however, can be derived from a
momentum balance. Thus, by momentum considerations

it is possible to show that the vectorial force Fona body
inside & control surface S is given by the surface integral

Fe | [o—vad5-, [5 (77, [7-43

. where vector notation is used, the 0 subscript indicates free-

stream conditions, p and p are the local static pressure and

density, and V is the local velocity vector. Let the surface
S be a cylinder of infinite radius and two yz planes closing the
cylinder be located infinitely far ahead of and behind the
airplane. Then the lift force is given to the lowest order by

I=Fm— [ [mwetumcdydz

which. red'uces to

—PoUof_: IR iz

This can be simplified since w=0¢/0z and (A¢):.., 18 the same
as the jump in the potential evaluated at the airplane trailing
edge. ‘Thus the expression for lift becomes -

LtpoUo m.(A(,D)TE dy ) (37)
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Equation (37) applies to all slender shapes. In special
cases represented by figure 3 (¢), thickness effects always have
even symmetry with respect to the z=0 plane, and it follows
that the total lift and the vortex distribution in the wake of
such configurations are affected only by the part of the poten-
tial due to angle of attack, even though the detailed load
distribution depends upon both thickness and angle-of-attack
solutions.

‘ EXAMPLES
PRESSURE ON A TRIANGULAR WING WITH ELLIPTIC CROSS SECTION

It is of interest to calculate, by equation (24), the pressure
on nonlifting wings of triangular plan form and elliptic cross
section flying at supersonic speeds, since examples of this
type have been solved without restriction to slender-wing
theory. It is proposed, therefore, to study two cases given
first by Squire (ref. 8) and then to compare the analytical
results.

Let the wing be placed at zero angle of attack in a super-
sonic free stream of Mach number M,. Consider first the
thickness distribution for which the ordinate of the upper
surface is

Mz, y)— Smog VM — (38)

where ¢, is the root chord, ¢ is wing thickness at z=c,, and m

is the tangent of the semiapex angle of the plan form. The-

flow is supersonic, so it is unnecessary to consider closure.

It follows from equation (38) that the elliptic section in the
plane z=z; has major and minor semiaxes equal to mz
and {z1/2co respectively. The cross-sectional area and the
surface slope are, therefore,

Ohfdz=tmz[2c,/mPE—1

Since attention is confined to symmetric nonlifting wings,
the boundary conditions are planar and are expressed by
equation (26) for «=0. Further, the solution is given in
terms of these boundary values by equation (23) wherein
(0¢/On);~o becomes Uy (0h/0z) and (Ag)..o is zero by sym-

S(@)=mtma’f2c,

metry. Let us firs study the flow on the surface of the wing.*

Then, although S’/(z) is discoptinuous at the origin, we can
still write the equation for ¢(z, ¥, 0) in the form (see the
discussion succeeding equation (24))

1 1" oh 1 (% o s 02—
mqo(:c,y,O)=;f_mb—xln|y—y1]dyl—-$ﬁ S’ (21) ln—(—%—@dxl

Since
1 (= tmzinly—y|dy, mix In T2,
= = n——: m
—mz 200 MP—y® 200 2 vl <ma

the expression for perturbation potential becomes

<l—lnmiﬁ>; vl < mz

From equatlon (32a), wherein dR/dx is, of course, zero
since there is no body, the pressure coeﬂicle.nt on the wing
is

imz
U 90(93:3/,0)— 264

=%";- (aniﬁ—1>; vl < ma 39)
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Hence, the pressure distribution on the wing is uniform.
Analysm not limited by the assumption of slenderness yields
for pressure coefficient on the wing

_tm K—F

= CO _ﬁzmz

where K and E are complete elliptic integrals with modulus
Y1—m?g. Since for values of the modulus near one the
asymptotic relations

4
len—"ﬁ; Ee~=1

apply, the pressure coefficient in slender-wing theory is secn
to be.a first-order approximation.

If one is interested in the pressure coefficient in the 2=0
plane but off (although still in the vicinity of) the wing, the
discontinuity in S”/(z) at the origin should be considered.
In such a case, since AS’/(0) is wtm/cy and S;'(z) is zoro,
equation (24) becomes

1 (™ ok
77 ¢($,y,0)=;j_m 5% Infy—|dy—

Since

Iyl+~~/F_77f—a:_2

1 (™ tmaln|ly—yi|dy: miz

mz
—mz 260‘/77122:2——2/12 200 |',1/| >

oﬁe can show the expression. for the pressure coefficiont off,
but in the plane of, the wing is

0=tﬂ[ [yl 3 g 2GHAT—F)
T | F—mi2 ' Byl r—m)

1]5 ly|>mz
(40)

Notice that the pressure has a square-root singularity along
the wing leading edges, a result consistent with the exact
linearized-theory solution. The pressure along the Mach
cone from the wing apex, which is zero according to linearized
theory, is not zero according to equation (40) but its magni-
tude is of the order (8m)? which, in keeping with the assump-
tions of slender-airplane theory, is negligible.

Squire has also considered the wing with ordinates given by

. l
My =g g NP (41)

The lateral section is again. elliptic, with semimajor and

semiminor axes equal to maz and tr?/2¢,®. Cross-sectional
area and surface slope are, respectively,
Tmiz oh__ t 2mi—y?

Slx)=

2c,3 oz 2m¢o’~/m’§—-y’

By direct integration it can be shown that on the wing

0,—’”::;" <3ln B;in 4) “2)
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Analysis not limited to slender wings yields the expression

Cv= iy, (8—F'm) K—4—26m) ]

and again the results are in agreement if higher-order terms
in fm are neglected.

A study of generalized conical flow fields in linearized
supersonic theory reveals that the linear pressure distribu-
tion in the above problem can also be obtained on a wing
with thickness specified by the relation

e s 22

where % is a constant that can be related to the maximum
thickness ratio (attained along the line mafy=1.31) of the
wing. The cross-sectional area and surface slope are,
respectively,

wkma? oh ky?
3 7 0 mym2P—yf

and pressure coefficient on the wing is

‘S(@)=

4
C,=2kmz <ln ﬂ_m—2>

The Jatter expression agrees to the first order in fm with the
general linearized solution for such a wing presented in
reference 9. Slender-wing theory thus reteins the property
of the more general linear theory in that a given pressure
distribution does not necessarily yield a unique thickness
distribution.

SUPERSONIC DRAG OF WINGS AT ZERO INCIDENCE

The general expression for the supersonic drag of a slender
acrodynamic shape has been derived by Ward (ref. 3) through
the use of momentum methods. It is also possible to obtain
these results by direct integration of the product of pressure
and surface slope over the specified surface; the analysis,
however, requires rather careful attention to orders of inte-
gration, when planar problems are involved. Consider, for
example, the drag of a wing at zero incidence and with a

specified thickness distribution z=zh(z,%). The drag of
the wing is expressible in the form
D=D.+2¢ f f 0, Lo d:c dy (43)

where the first term includes possible contributions to the
drag that result from a finite leading-edge radius of curva-
ture. From reference 10, this drag per unit of span is, in
slender-wing theory,

dD, ds\?
&%) “

whore r, is the radius of curvature normal to the wing
leading edge and s is the local semispan. If the ordinate of
the wing, in the vicinity of the leading edge, is

2,=1(8,y) vs—y

equation (44) becomes

Assuming the wing is pointed and the only dlscontmmty‘
in the interval 0 <z<l occurs at the ongm the potentml@f
the wing, evaluated in the plane of the wing, is given by

_Uq [* dz.(z,n) . Us 2
ol 0=22 [ 2220 pujy a0 (i 2

U° S” (@)ln(z—z)da,  (45)

and, since pressure coefficient in the planar case is directly
proportional to the streamwise gradient of ¢, the contribu-
tion of each of the terms on the nbht-hand side of equation
(45) can be calculated separately in equation (43). The
second and third terms offer no difficulty but simplification
of the expression resulting from the first term necessitates
an inversion of order of integration and, if the leading edge
has a finite radius of curvature, such an inversion cannot be
carried out in the conventional manner. However, a method
by means of which such an inversion can be carried out is
presented in reference 11. Thus, set

i 1. 0z,(z,y) 0%z, (x,
R e

R * 02u(x,Y) bzzr(x:'yl) _—
Ig—ﬁ dylfo dy —5- oi  rly—uil

where ]C refers to the “finite part’” of the integral 7 and the

and

notation fdyfdyl signifies that the y; integration must be
performed first. Then if

eua ) =F6.) iy

it can be shown that

~5=2 (2) e

Detailed analysis reveals that the residual term (i. e., the
value of Ir—1Is) yields a drag component that is equal in
magnitude but opposite in sign to D,.

The final expression for the drag of the wing is then

2= SO dh(z, y)]‘ f:(n Oh(z, 'yl)l Inly—y|di+
=l -

q —s(h

S’(l)

In E+— 40 f S"(z2) In (—27) das—

1 1
o~ f S"(2)dz f 8" In|z—|dz (46)
i 0- 0

As a particular example, consider the wing-like surface of
triangular plan form (ref. 8) which results from a combina-

T For a definition of the finite-part Integrationtechnique as used here, ses reference 11,
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tion of the surfaces specified in equations (38) and (41) and

has ordinates given by the expression

T2, )= s Cm VM @)

This wing has rounded leading edges and a finite trailing-

edge angle, and from equation (46) its drag coefficient based |

on wing area is found to be
t "2 .
Cp=—2m= <E.?> <1—l—ln ) )

‘It 18 apparent from equation (46) that, for the type of wing
considered, wing drag varies with Mach number so long as
the streamwise gradient of area is finite at the rear of the
wing; conversely, there is no dependence on Mach number
when the gradient of area vanishes there. For example, a
wing with an elliptic plan form and biconvex sections satisfies
the latter condition, and its drag coefficient based on wing

area 1S
' WAAN
Com=2 2 (E) (49)

where ¢ is total maximum thickness, @ is the semiaxis of the
elliptic plan form in the stream direction, and b is the semi-
axis measured normal to the stream direction.

A comparison between the values of 0y given by slender-
airplane theory for the Squire wing (eq. (48)) and the elliptic
lens (eq- (49 )) and the exact thin-airfoil-theory values ® for
the same wings is shown in figure 4.
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Figure 4.—Comparison of slender—alrplane theory with exact thin-
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teristics. An essential feature of Jones’ results involves
the use of combined flow fields that are obtained by super-
imposing the disturbance fields in forward and reversed
motions. So long as the governing equations of flow are
linear, it is possible to establish reciprocity relations between
the induced fields of arbitrarily situated sources and doublets
in combined flow fields. Conditions for minimum drag
under imposed restrictions are then expressed in terms of the
pressure induced in the superimposed fields. For example,
it is found that if the thickness distribution for a symmetrical
nonlifting wing yields a specified volume, then drag is &
minimum if the thickness is distributed in such a way that
the pressure gradient in the combined field remains constant
over the plan form of the wing. The application of this
condition to a slender wing having a continuous value of
S’’(z) everywhere except at the origin is simple, since from
equation (24) the perturbation potential in the two direc-
tions of flow can be written explicitly. In the plane of the
wing, the forward flow yields

¢f(x:y: 0) 5 f A=— b¢j l’nly——ylldyl__f S”(I ) l’nz(z 5 231) day

and the reverse flow yields

1 LA r ’ U, (* , 2
or(Z,Y, 0)='2; f_bA—é)%lnly_ylldyl_l_z_;ﬁ Sl (z)) In (xlﬁ ) dzy

where I is the streamwise length of the wing and b is local
semispan. Since

O¢s__ Oer
dn . on

the perburbation potential ¢z in the combined field is
— 1 —
ool 0= [ 5y n 22

and it follows directly that if S’(0)=S8’(l)=0, pressure
coefficient in the combined field is

0 lSl/(xl) 1 (50)

P
T Jo a—1

In the case of thickness distribution with given volume, 0,,
is a linear function in z and equation (50) is precisely the
same integral equation that arises in the determination of
thickness distribution with given volume for a slender body
of revolution in superonic flight (refs. 14, 15, and 16). The
same chordwise distribution of area therefore exists for
wings and bodies of revolution under the given conditions.
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